3.1.56 \(\int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx\) [56]

3.1.56.1 Optimal result
3.1.56.2 Mathematica [A] (verified)
3.1.56.3 Rubi [A] (verified)
3.1.56.4 Maple [C] (verified)
3.1.56.5 Fricas [F]
3.1.56.6 Sympy [F]
3.1.56.7 Maxima [F]
3.1.56.8 Giac [F]
3.1.56.9 Mupad [F(-1)]

3.1.56.1 Optimal result

Integrand size = 27, antiderivative size = 189 \[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx=\frac {b x^2 \sqrt {d-c^2 d x^2}}{16 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))+\frac {\sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{16 b c^3 \sqrt {1-c^2 x^2}} \]

output
-1/8*x*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2+1/4*x^3*(-c^2*d*x^2+d)^( 
1/2)*(a+b*arcsin(c*x))+1/16*b*x^2*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2 
)-1/16*b*c*x^4*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/16*(a+b*arcsin(c* 
x))^2*(-c^2*d*x^2+d)^(1/2)/b/c^3/(-c^2*x^2+1)^(1/2)
 
3.1.56.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.74 \[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx=\frac {\sqrt {d-c^2 d x^2} \left (a^2+b^2 c^2 x^2 \left (1-c^2 x^2\right )+2 a b c x \sqrt {1-c^2 x^2} \left (-1+2 c^2 x^2\right )+2 b \left (a+b c x \sqrt {1-c^2 x^2} \left (-1+2 c^2 x^2\right )\right ) \arcsin (c x)+b^2 \arcsin (c x)^2\right )}{16 b c^3 \sqrt {1-c^2 x^2}} \]

input
Integrate[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]
 
output
(Sqrt[d - c^2*d*x^2]*(a^2 + b^2*c^2*x^2*(1 - c^2*x^2) + 2*a*b*c*x*Sqrt[1 - 
 c^2*x^2]*(-1 + 2*c^2*x^2) + 2*b*(a + b*c*x*Sqrt[1 - c^2*x^2]*(-1 + 2*c^2* 
x^2))*ArcSin[c*x] + b^2*ArcSin[c*x]^2))/(16*b*c^3*Sqrt[1 - c^2*x^2])
 
3.1.56.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.87, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {5198, 15, 5210, 15, 5152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx\)

\(\Big \downarrow \) 5198

\(\displaystyle \frac {\sqrt {d-c^2 d x^2} \int \frac {x^2 (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{4 \sqrt {1-c^2 x^2}}-\frac {b c \sqrt {d-c^2 d x^2} \int x^3dx}{4 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {\sqrt {d-c^2 d x^2} \int \frac {x^2 (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{4 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {\sqrt {d-c^2 d x^2} \left (\frac {\int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}}dx}{2 c^2}+\frac {b \int xdx}{2 c}-\frac {x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{2 c^2}\right )}{4 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {\sqrt {d-c^2 d x^2} \left (\frac {\int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{2 c^2}+\frac {b x^2}{4 c}\right )}{4 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5152

\(\displaystyle \frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))+\frac {\sqrt {d-c^2 d x^2} \left (\frac {(a+b \arcsin (c x))^2}{4 b c^3}-\frac {x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{2 c^2}+\frac {b x^2}{4 c}\right )}{4 \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}\)

input
Int[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]
 
output
-1/16*(b*c*x^4*Sqrt[d - c^2*d*x^2])/Sqrt[1 - c^2*x^2] + (x^3*Sqrt[d - c^2* 
d*x^2]*(a + b*ArcSin[c*x]))/4 + (Sqrt[d - c^2*d*x^2]*((b*x^2)/(4*c) - (x*S 
qrt[1 - c^2*x^2]*(a + b*ArcSin[c*x]))/(2*c^2) + (a + b*ArcSin[c*x])^2/(4*b 
*c^3)))/(4*Sqrt[1 - c^2*x^2])
 

3.1.56.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 5152
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a 
 + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d 
+ e, 0] && NeQ[n, -1]
 

rule 5198
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + 
(e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcS 
in[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/Sqrt[1 
 - c^2*x^2]]   Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x 
] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]]   Int[ 
(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, 
 f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
 

rule 5210
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 
3.1.56.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 367, normalized size of antiderivative = 1.94

method result size
default \(-\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{4 c^{2} d}+\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{8 c^{2}}+\frac {a d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{8 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{16 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}+8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (4 \arcsin \left (c x \right )+i\right )}{256 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}-8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (-i+4 \arcsin \left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(367\)
parts \(-\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{4 c^{2} d}+\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{8 c^{2}}+\frac {a d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{8 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{16 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}+8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (4 \arcsin \left (c x \right )+i\right )}{256 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}-8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (-i+4 \arcsin \left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(367\)

input
int(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)
 
output
-1/4*a*x*(-c^2*d*x^2+d)^(3/2)/c^2/d+1/8*a/c^2*x*(-c^2*d*x^2+d)^(1/2)+1/8*a 
/c^2*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b*(-1/16 
*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/(c^2*x^2-1)*arcsin(c*x)^2+1 
/256*(-d*(c^2*x^2-1))^(1/2)*(-8*I*(-c^2*x^2+1)^(1/2)*x^4*c^4+8*c^5*x^5+8*I 
*(-c^2*x^2+1)^(1/2)*x^2*c^2-12*c^3*x^3-I*(-c^2*x^2+1)^(1/2)+4*c*x)*(4*arcs 
in(c*x)+I)/c^3/(c^2*x^2-1)+1/256*(-d*(c^2*x^2-1))^(1/2)*(8*I*(-c^2*x^2+1)^ 
(1/2)*c^4*x^4+8*c^5*x^5-8*I*(-c^2*x^2+1)^(1/2)*x^2*c^2-12*c^3*x^3+I*(-c^2* 
x^2+1)^(1/2)+4*c*x)*(-I+4*arcsin(c*x))/c^3/(c^2*x^2-1))
 
3.1.56.5 Fricas [F]

\[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx=\int { \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="fricas" 
)
 
output
integral(sqrt(-c^2*d*x^2 + d)*(b*x^2*arcsin(c*x) + a*x^2), x)
 
3.1.56.6 Sympy [F]

\[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx=\int x^{2} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \]

input
integrate(x**2*(-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x)),x)
 
output
Integral(x**2*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x)), x)
 
3.1.56.7 Maxima [F]

\[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx=\int { \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="maxima" 
)
 
output
b*sqrt(d)*integrate(sqrt(c*x + 1)*sqrt(-c*x + 1)*x^2*arctan2(c*x, sqrt(c*x 
 + 1)*sqrt(-c*x + 1)), x) + 1/8*a*(sqrt(-c^2*d*x^2 + d)*x/c^2 - 2*(-c^2*d* 
x^2 + d)^(3/2)*x/(c^2*d) + sqrt(d)*arcsin(c*x)/c^3)
 
3.1.56.8 Giac [F]

\[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx=\int { \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="giac")
 
output
integrate(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)*x^2, x)
 
3.1.56.9 Mupad [F(-1)]

Timed out. \[ \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x)) \, dx=\int x^2\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \]

input
int(x^2*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2),x)
 
output
int(x^2*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2), x)